STiCM

Select / Special Topics in Classical Mechanics

P. C. Deshmukh

Department of Physics
Indian Institute of Technology Madras Chennai 600036
pcd@physics.iitm.ac.in

School of Basic Sciences
Indian Institute of Technology Mandi
Mandi 175001
pcdeshmukh@iitmandi.ac.in

STiCM Lecture 31

Unit 10 : Classical Electrodynamics

Classical Electrodynamics

Charles
Coulomb
1736-1806

Carl Freidrich Gauss
1777-1855

Andre Marie Ampere 1775-1836

Michael
Faraday
1791-1867

Electrodynamics \& STR

The special theory of relativity is intimately linked to the general field of electrodynamics. Both of these topics belong to 'Classical Mechanics'.

James Clerk Maxwell 1831-1879

Albert Einstein 1879-1955

Foundations of classical electrodynamics

Coulomb also advanced the view that negative charges exist, that they did not merely represent absence of a positive charge.

Linear Superposition

$$
\begin{aligned}
& \vec{F}_{12}=\frac{1}{4 \pi \varepsilon_{0}} q_{1} q_{2} \frac{\vec{r}_{1}-\vec{r}_{2}}{\left|\vec{r}_{1}-\vec{r}_{2}\right|^{3}} \\
& \qquad \vec{F}_{\text {on } q}=\frac{q}{4 \pi \varepsilon_{0}} \sum_{i} q_{i} \frac{\vec{r}-\vec{r}_{i}}{\left|\vec{r}-\vec{r}_{i}\right|^{3}} \\
& \vec{F}_{\text {on } q}=\frac{q}{4 \pi \varepsilon_{0}} \iiint \frac{\rho\left(\vec{r}^{\prime}\right)\left(\vec{r}-\vec{r}^{\prime}\right) d^{3} \vec{r}^{\prime}}{\left|\vec{r}_{1}-\vec{r}^{\prime}\right|^{3}}
\end{aligned}
$$

Since force on a particle is proportional to its charge q, it is fruitful to define the proportionality as the electric field \vec{E} :

$$
\begin{aligned}
& \vec{E}(\vec{r})=\frac{\vec{F}(\vec{r})}{q}=\frac{q^{\prime}}{4 \pi \varepsilon_{0}} \frac{\vec{r}-\vec{r}^{\prime}}{\left|\vec{r}-\vec{r}^{\prime}\right|^{3}} \\
& \vec{E}(\vec{r})=\frac{1}{4 \pi \varepsilon_{0}} \sum_{i} q_{i} \frac{\vec{r}-\vec{r}_{i}}{\left|\vec{r}-\vec{r}_{i}\right|^{3}} \\
& \vec{E}(\vec{r})=\frac{1}{4 \pi \varepsilon_{0}} \iiint \frac{\rho\left(\vec{r}^{\prime}\right)\left(\vec{r}-\vec{r}^{\prime}\right) d^{3} \vec{r}^{\prime}}{\left|\vec{r}_{1}-\vec{r}^{\prime}\right|^{3}}
\end{aligned}
$$

What is the confidence level in our contention that the force goes as inverse-square of the distance between the charges?

Inverse force requires: $\quad V(r) \sim \frac{1}{r}$,
so that the force would vary as: $\frac{1}{r^{2}}$.
Why can't the potential be: $V(r) \sim \frac{e^{-r / 2}}{r}$ (Yukawa)?

The force/interaction can originate from an exchange of particles - like ping-pong balls thrown back and forth between the charges, thus binding them.

μ : mass of the 'ping-pong' messenger carrier
\rightarrow photon mass
$V(r) \sim \frac{1}{r} ; \quad$ or $\quad V(r) \sim \frac{e^{-\frac{r \mu c}{h}}}{r} ?$
Note that $\mu \rightarrow 0 \Rightarrow$ Coulomb.
Inverse force requires: $\quad V(r) \sim \frac{1}{r}$,
so that the force would vary as: $\frac{1}{r^{2}}$.
Thus, the question of the interaction potential being Coulomb or Yukawa is bound to the value of μ, the photon mass.

The question thus translates to what is our confidence level in knowing the mass of the photon?
"Because classical Maxwellian electromagnetism has been one of the cornerstones of physics during the past century, experimental tests of its foundations are always of considerable interest. Within that context, one of the most important efforts of this type has historically been the search for a rest mass of the photon....."

The mass of the photon Liang-Cheng Tu, Jun Luo and George T Gillies Rep. Prog. Phys. 68 (2005) 77-130

The uncertainty principle, puts an ultimate upper limit:

$$
\begin{aligned}
& \mu<\frac{\hbar}{c^{2} \Delta t} \\
& \quad<10^{-66} g m S_{\text {рсо_sticm }}
\end{aligned}
$$

$\mu\left\langle 10^{-66} \mathrm{gms}\right.$
Consequences of even this tiny mass:

- a wavelength dependence of the speed of light in free space,
- deviations from exactness in Coulomb's law and Amp`ere's law,
- the existence of longitudinal electromagnetic waves,
- the addition of a Yukawa component to the potential of magnetic dipole fields,

The mass of the photon
Liang-Cheng Tu, Jun Luo and George T Gillies
Rep. ProgsṭRhys. 68 (2005) 77-130

Range of the Coulomb interaction:

$$
R: \quad c \Delta t \sim c \frac{\hbar}{\Delta E} \sim \frac{\hbar c}{\mu c^{2}}
$$

$$
\begin{aligned}
& \mathrm{R} \\
& V(r) \sim \infty \\
& \frac{e^{-\frac{r}{h / \mu c}}}{r} ; \text { i.e. } \\
& V(r) \sim \frac{e^{\frac{r \mu c}{h}}}{r}
\end{aligned}
$$

$$
\mu \rightarrow 0 \quad \Rightarrow \quad \text { Coulomb. }
$$

Rest mass of the photon

Range of the
 At what rate does the potential between two charges diminish with distance?

Consider the 'source' charge to be in a 3-dimensional space bounded by a closed surface having arbitrary shape.

Position vectors with prime: source points Without prime: field points

$$
\begin{aligned}
& \oiint \vec{E}(\vec{r}) \bullet \overrightarrow{d S}=\oiint\left(\frac{q}{4 \pi \varepsilon_{0}} \frac{\vec{r}-\vec{r}^{\prime}}{\left|\vec{r}-\vec{r}^{\prime}\right|^{3}}\right) \bullet \overrightarrow{d S} \\
& \oiint \vec{E}(\vec{r}) \bullet \overrightarrow{d S}=\oiint\left(\frac{q}{4 \pi \varepsilon_{0}} \frac{\hat{u}}{\left|\vec{r}-\vec{r}^{\prime}\right|^{2}}\right) \bullet \overrightarrow{d S} \\
& \oiint \vec{E}(\vec{r}) \bullet \overrightarrow{d S}=\oiint\left(\frac{q}{4 \pi \varepsilon_{0}} \frac{d S \cos \xi}{\left|\vec{r}-\vec{r}^{\prime}\right|^{2}}\right) \quad \begin{array}{l}
\text { Independent of shape! }
\end{array} \\
& \begin{array}{ll}
\text { Also, the result is }
\end{array} \\
& \oiint \vec{E}(\vec{r}) \bullet \overrightarrow{d S}=\oiint\left(\frac{q}{4 \pi \varepsilon_{0}} \frac{d \Omega\left|\vec{r}-\vec{r}^{\prime}\right|^{2}}{\left|\vec{r}-\vec{r}^{\prime}\right|^{2}}\right) \begin{array}{l}
\text { completely } \\
\text { independent of just } \\
\text { where inside the } \\
\text { arbitrary region is the } \\
\text { charge placed! }
\end{array} \\
&=\frac{q}{\varepsilon_{0}} \quad
\end{aligned}
$$

$\oiint \vec{E}(\vec{r}) \bullet \overrightarrow{d S}=\frac{q_{\text {inside }}}{\varepsilon_{0}}$
Independent of shape!
The result is completely independent of just where inside the arbitrary region the charge is placed!

Hence principle of linear superposition must hold!

$\oiint \vec{E}(\vec{r}) \bullet \overrightarrow{d S}=\frac{q_{\text {total charge inside }}}{\varepsilon_{0}}$

$$
\oiint \vec{E}(\vec{r}) \bullet \overrightarrow{d S}=\frac{\iiint \rho\left(\vec{r}^{\prime}\right) d^{3} \vec{r}^{\prime}}{\varepsilon_{0}}
$$

$$
=\frac{\sum_{i} q_{i, \text { inside }}}{\varepsilon_{0}}
$$

Gauss' divergence theorem

Differential

and Integral forms of
Gauss' law.

$$
\vec{\nabla} \bullet \vec{E}(\vec{r})=\frac{\rho(\vec{r})}{\varepsilon_{0 \text { D__Stcm }}}
$$

$$
\iiint \vec{\nabla} \bullet \vec{E}(\vec{r}) d^{3} \vec{r}=\frac{\iiint \rho(\vec{r}) d^{3} \vec{r}}{\varepsilon_{0}}
$$

$$
\begin{aligned}
& =\oiint \vec{E}(\vec{r}) \bullet \overrightarrow{d S} \\
& \text { is completely } \\
& \text { ent of : } \\
& \text { nape of the region. }
\end{aligned}
$$

The result is completely
independent of :

- shape of the region.
- where the charge/charges of charge-distributions is/are located,
- and also irrespective of these charge distributions being in any state of motion.
- as long as they remain insidethe region under our consideration.

Continuous charge distributions:

charge density $\rho(\vec{r})=\lim _{\delta V \rightarrow 0} \frac{\delta q}{\delta V}$

$$
q=\iiint \rho(\vec{r}) d^{3} \vec{r}
$$

$$
\begin{gathered}
\iiint \vec{\nabla} \bullet \vec{E}(\vec{r}) d^{3} \vec{r}=\frac{\iiint \rho(\vec{r}) d^{3} \vec{r}}{\varepsilon_{0}} \\
=\oiint \vec{E}(\vec{r}) \bullet \overrightarrow{d S}
\end{gathered}
$$

Integral and Differential form of Gauss' law:
First Equation in 'Maxwell's Equations'

Carl Friedrich Gauss formulated the law in 1835; published in 1867

James Clerk Maxwell 1831-1879

Showed that
light
is
EM
phenomenon

We shall take a break here.......

Questions?

pcd@physics.iitm.ac.in

Comments ?
http://www.physics.iitm.ac.in/~labs/amp/
pcdeshmukh@iitmandi.ac.in

Next: L32 Unit 10 - Oersted-Ampere-Maxwell law

STiCM

Select / Special Topics in Classical Mechanics

P. C. Deshmukh

Department of Physics Indian Institute of Technology Madras Chennai 600036
pcd@physics.iitm.ac.in

School of Basic Sciences Indian Institute of Technology Mandi Mandi 175001
pcdeshmukh@iitmandi.ac.in

STiCM Lecture 32

Unit 10 : Classical Electrodynamics

How shall we write the electric field due to a point charge as gradient of a scalar function?

$$
\begin{aligned}
\vec{E}(\vec{r}) & =-\vec{\nabla}\left[\frac{1}{4 \pi \varepsilon_{0}} \frac{1}{\left|\vec{r}-\vec{r}^{\prime}\right|}\right] \\
& =-\frac{1}{4 \pi \varepsilon_{0}} \vec{\nabla}\left[\frac{1}{\left|\vec{r}-\vec{r}^{\prime}\right|}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \vec{\nabla}\left[\frac{1}{\left[\vec{r}-\vec{r}^{\prime} \mid\right.}\right]= \\
& =\left(\hat{e}_{x} \frac{\partial}{\partial x}+\hat{e}_{y} \frac{\partial}{\partial y}+\hat{e}_{z} \frac{\partial}{\partial z}\right)\left[\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}\right]^{-1 / 2} \\
& =\hat{e}_{x} \frac{\partial}{\partial x}\left[\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}\right]^{-1 / 2}+\hat{e}_{y} \frac{\partial}{\partial y}[. .]^{-1 / 2}+\hat{e}_{z} \frac{\partial}{\partial z}[. .]^{-1 / 2} \\
& =\hat{e}_{x}\left(-\frac{1}{2}\left[\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}\right]^{-3 / 2}\left\{\frac{\partial}{\partial x}\left[\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{\prime}\right]\right\}+\ldots+\ldots\right. \\
& =\hat{e}_{x}\left(-\frac{1}{2}\left[\left[\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}\right]^{-3 / 2}\left[2\left(x-x^{\prime}\right)\right]+\ldots+\ldots\right.\right. \\
& \vec{\nabla}\left[\frac{1}{\left|\vec{r}-\vec{r}^{\prime}\right|}\right]=\square \frac{\vec{r}-\vec{r}^{\prime}}{\left\{\left|\vec{r}-\vec{r}^{\prime}\right|^{2}\right\}^{3 / 2}}=\square \frac{\vec{r}-\vec{r}^{\prime}}{\left|\vec{r}-\vec{r}^{\prime}\right|^{3}} \\
& \text { pos.sten }
\end{aligned}
$$

$$
\vec{\nabla}\left[\frac{1}{\left|\vec{r}-\vec{r}^{\prime}\right|}\right]=-\frac{\vec{r}-\vec{r}^{\prime}}{\left\{\left|\vec{r}-\vec{r}^{\prime}\right|^{2}\right\}^{3 / 2}}=-\frac{\vec{r}-\vec{r}^{\prime}}{\left|\vec{r}-\vec{r}^{\prime}\right|^{3}}
$$

'FIELD', as
negative gradient
of
'POTENTIAL' of
'POTENTIAL'

$$
\begin{aligned}
\vec{E}(\vec{r}) & =-\vec{\nabla}\left[\frac{1}{4 \pi \varepsilon_{0}} \frac{1}{\left|\vec{r}-\vec{r}^{\prime}\right|}\right] \\
& =-\frac{q}{4 \pi \varepsilon_{0}} \vec{\nabla}\left[\frac{1}{\left|\vec{r}-\vec{r}^{\prime}\right|}\right]
\end{aligned}
$$

Curl of gradient is identically zero.

The electric field is conservative.

$$
\begin{aligned}
\vec{E}(\vec{r}) & =-\vec{\nabla}\left[\frac{1}{4 \pi \varepsilon_{0}} \frac{1}{\left|\vec{r}-\vec{r}^{\prime}\right|}\right] \\
& =-\frac{q}{4 \pi \varepsilon_{0}} \vec{\nabla}\left[\frac{1}{\left|\vec{r}-\vec{r}^{\prime}\right|}\right]
\end{aligned}
$$

$$
\vec{\nabla} \times \vec{E}(\vec{r})=\overrightarrow{0}
$$

$$
\vec{\nabla} \bullet \vec{E}(\vec{r})=\frac{\rho(\vec{r})}{\varepsilon_{0}}
$$

$$
\vec{\nabla} \times \vec{E}(\vec{r})=\overrightarrow{0}
$$

$$
\begin{aligned}
& \vec{\nabla} \bullet(-\vec{\nabla} \phi)=\frac{\rho(\vec{r})}{\varepsilon_{0}} \\
& \vec{\nabla} \bullet \vec{\nabla} \phi(\vec{r})=\nabla^{2} \phi(\vec{r})=-\frac{\rho(\vec{r})}{\varepsilon_{0}}
\end{aligned}
$$

Siméon Denis Poisson 1781-1840

Poisson's equation

"Life is good for only two things, discovering mathematics and teaching mathematics."

Magnetic field $\vec{B}(\vec{r})$ does not originate from magnetic 'charges' / 'poles'

Electric charges, when in motion, constitute a 'current' which generates magnetic field.

$=\frac{\mu_{0}}{4 \pi} \iiint \frac{\vec{J}\left(\vec{r}^{\prime}\right) \times\left(\vec{r}-\vec{r}^{\prime}\right) d^{3} \vec{r}^{\prime}}{\left|\vec{r}-\vec{r}^{\prime}\right|^{3}}$
Empirical law, based on experimental observations.

The primary definition of the magnetic field

$$
\begin{aligned}
\vec{B}(\vec{r}) & =\frac{\mu_{0} I}{4 \pi} \int \frac{d l \vec{u}\left(\vec{r}^{\prime}\right) \times\left(\vec{r}-\vec{r}^{\prime}\right)}{|\vec{r}-\vec{r}|^{3}} \\
& =\frac{\mu_{0}}{4 \pi} \iiint \frac{\vec{J}\left(\vec{r}^{\prime}\right) \times\left(\vec{r}-\vec{r}^{\prime}\right) d^{3} \vec{r}^{\prime}}{\left|\vec{r}-\vec{r}^{3}\right|^{\prime}}
\end{aligned}
$$

$$
\begin{array}{|l|}
\vec{\nabla} \bullet \vec{B}=0 \\
\vec{\nabla} \times \vec{B}=\mu_{0} \vec{J}
\end{array}
$$

This is not hard to see by using elementary vector calculus. A useful result in this regard is the following: $\vec{\nabla} \bullet \frac{\left(\vec{r}-\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|^{3}}=4 \pi \delta\left(\vec{r}-\vec{r}^{\prime}\right)$
$\vec{\nabla} \times \vec{B}=\mu_{0} \vec{J}$
Stokes' theorem
\Rightarrow
$\mu_{0} \iint \vec{J} \bullet \overrightarrow{d S}=\iint \vec{\nabla} \times \vec{B} \bullet \overrightarrow{d S}=\oint \vec{B} \bullet \overrightarrow{d l}$
\Rightarrow
$\mu_{0} I=\oint \vec{B} \bullet \overrightarrow{d l} \quad$ Oersted-Ampere's law

Source of electromotive force.

What is it that can have an influence on an electric charge?

- Electric field generated by another charge.
- An influence due to a changing magnetic field.
Loop : Stationary

Lorentz

 force predicts:(a) Clockwise Current
(b) Counterclockwise Current
(c) No Current

Loop : Dragged to the right.

Lorentz force predicts:
(a) Clockwise Current
(b) Counterclockwise Current
(c) No Current

Faraday's experiments

Loop held fixed; Magnet field dragged toward left. *NO* Lorentz force.

Current: identical!

Strength of B decreased. Nothing is moving, but still, current seen!!!

$$
I \propto \frac{d B}{d t}
$$

'Motion of Charged Particles

 inElectromagnetic Fields and
Special Theory of Relativity'
P. Chaitanya Das, G. Srinivasa Murty, K. Satish

Kumar, T A. Venkatesh and P.C. Deshmukh
Resonance, Vol. 9, Number 7, 77-85 (2004)
http://www.ias.ac.in/resonance/July2004/pdf/July2004Classroom3.pdf

$$
\begin{aligned}
& \vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
& \vec{E}(\vec{r})=-\vec{\nabla}\left[\frac{1}{4 \pi \varepsilon_{0}} \frac{1}{\left|\vec{r}-\vec{r}^{\prime}\right|}\right] \\
& =-\frac{q}{4 \pi \varepsilon_{0}} \vec{\nabla}\left[\frac{1}{\left|\vec{r}-\vec{r}^{\prime}\right|}\right] \\
& \iint(\vec{\nabla} \times \vec{E}) \bullet \overrightarrow{d S}=\iint\left(-\frac{\partial \vec{B}}{\partial t}\right) \bullet \overrightarrow{d S} \\
& \oint \vec{E} \bullet \overrightarrow{d l}=-\frac{\partial}{\partial t} \iint \vec{B} \bullet \overrightarrow{d S}=-\frac{\partial \Phi_{B}}{\partial t} ; \\
& \Phi_{B} \text { : magnetic flux crossing the surface }
\end{aligned}
$$

$\underset{\substack{\text { Fasten }}}{ }$

Empirical laws of Classical Electrodynamics

$\vec{\nabla} \bullet \vec{E}(\vec{r})=\frac{\rho(\vec{r})}{\varepsilon_{0}}$ Coulomb, $\oiint \vec{E}(\vec{r}) \bullet \overrightarrow{d S}=\frac{q_{\text {enclosed }}}{\varepsilon_{0}}$

$\vec{\nabla} \bullet \vec{B}=0 \quad \begin{aligned} & \text { 'charges'/ } \\ & \\ & \\ & \text { 'monopoles' }\end{aligned} \leftrightarrow B(\vec{r}) \cdot d S=0$

$$
\vec{\nabla} \times \vec{B}=\mu_{0} \vec{J} \quad \begin{aligned}
& \text { Oersted, } \\
& \begin{array}{l}
\text { Amperée__sтсм }
\end{array} \oint \vec{B} \cdot \overrightarrow{d l}=\mu_{0} I_{\text {enclosed }}
\end{aligned}
$$

Empirical laws
 of

Classical Electrodynamics

Charles
Coulomb
1736-1806

Carl Freidrich Gauss
1777-1855

Andre Marie
Ampere
1775-1836

Michael
Faraday
1791-1867

Electrodynamics: synthesis of electromagnetic phenomena and light/optics.

James Clerk Maxwell 1831-1879
$\vec{\nabla} \times \vec{B}=\mu_{0} \vec{J}$
Oersted,
$\oint \vec{B} \bullet \overrightarrow{d l}=\mu_{0} I_{\text {enclosed }}$

Maxwell added a term corresponding to changing electric flux, similar to the term for changing magnetic flux of Faraday-Lenz law

$$
\begin{gathered}
\oint \vec{B} \bullet \overrightarrow{d l}=\mu_{0} I_{\text {enclosed }}+\mu_{0} \varepsilon_{0} \frac{\partial}{\partial t} \iint \vec{E} \bullet \overrightarrow{d S} \\
\text { Oersted,Ampere - Maxwell } \\
\vec{\nabla} \times \vec{B}=\mu_{0} \vec{J}+\mu_{0} \varepsilon_{0} \frac{\partial \vec{E}}{\partial t}
\end{gathered}
$$

The equations of James Clerk Maxwell

$$
\vec{\nabla} \bullet \vec{E}(\vec{r})=\frac{\rho(\vec{r})}{\varepsilon_{0}}
$$

$\oiint \vec{E}(\vec{r}) \bullet \overrightarrow{d S}=\underline{q_{\text {enclosed }}}$ ε_{0}

$$
\begin{array}{ll}
\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} & \oint \vec{E} \bullet \overrightarrow{d l}=-\frac{\partial \Phi_{B}}{\partial t} \\
\vec{\nabla} \bullet \vec{B}=0 & \oiint \vec{B}(\vec{r}) \bullet \overrightarrow{d S}=0
\end{array}
$$

SYMMETRY!

$$
\oint \vec{B} \bullet \overrightarrow{d l}=\mu_{0} I_{\text {enclosed }}+
$$

$$
\vec{\nabla} \times \vec{B}=\mu_{0} \vec{J}+\mu_{0} \varepsilon_{0} \frac{\partial \vec{E}}{\partial t}
$$

Take the curl of the following vector: $\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}$
$\vec{\nabla} \times(\vec{\nabla} \times \vec{E})=-\frac{\partial}{\partial t}(\vec{\nabla} \times \vec{B})$

Work this out, it is easy: $\vec{\nabla} \times(\vec{\nabla} \times \vec{E})=\vec{\nabla}(\vec{\nabla} \bullet \vec{E})-(\vec{\nabla} \bullet \vec{\nabla}) \vec{E}$

$$
\begin{aligned}
\vec{\nabla}(\vec{\nabla} \bullet \vec{E})- & (\vec{\nabla} \bullet \vec{\nabla}) \vec{E}=-\frac{\partial}{\partial t}(\vec{\nabla} \times \vec{B}) \\
& \vec{\nabla}(\vec{\nabla} \bullet \vec{E})-(\vec{\nabla} \bullet \vec{\nabla}) \vec{E}=-\frac{\partial}{\partial t}\left(\mu_{0} \vec{J}+\mu_{0} \varepsilon_{0} \frac{\partial \vec{E}}{\partial t}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \vec{\nabla}(\vec{\nabla} \bullet \vec{E})-(\vec{\nabla} \bullet \vec{\nabla}) \vec{E}=-\frac{\partial}{\partial t}\left(\mu_{0} \vec{J}+\mu_{0} \varepsilon_{0} \frac{\partial \vec{E}}{\partial t}\right) \\
& \vec{\nabla}\left(\frac{\rho}{\varepsilon_{0}}\right)-\nabla^{2} \vec{E}=-\frac{\partial}{\partial t}\left(\mu_{0} \vec{J}+\mu_{0} \varepsilon_{0} \frac{\partial \vec{E}}{\partial t}\right)=-\mu_{0} \frac{\partial \vec{J}}{\partial t}-\mu_{0} \varepsilon_{0} \frac{\partial^{2} \vec{E}}{\partial t^{2}}
\end{aligned}
$$

In vacuum: $\nabla^{2} \vec{E}=\mu_{0} \varepsilon_{0} \frac{\partial^{2} \vec{E}}{\partial t^{2}}$
Likewise (show!): $\nabla^{2} \vec{B}=\mu_{0} \varepsilon_{0} \frac{\partial^{2} \vec{B}}{\partial t^{2}}$
Second-order homogeneous partial differential equation
Wave equations

$$
\mathrm{v}=\sqrt{\frac{1}{\mu_{0} \varepsilon_{0}}}
$$

$$
\nabla^{2} \vec{E}=\mu_{0} \varepsilon_{0} \frac{\partial^{2} \vec{E}}{\partial t^{2}} \quad \nabla^{2} \vec{B}=\mu_{0} \varepsilon_{0} \frac{\partial^{2} \vec{B}}{\partial t^{2}}
$$

$$
\begin{aligned}
\frac{\omega}{k} & =\mathrm{v}
\end{aligned}=\sqrt{\frac{1}{\mu_{0} \varepsilon_{0}}}=c .
$$

$$
\mathrm{v}=\sqrt{\frac{1}{\mu_{0} \varepsilon_{0}}}=c=2.9979 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

Maxwell observed that v obtained as above agreed with the speed of light.

He therefore concluded: "light is an electromagnetic disturbance propagated through the field according to electromagnetic laws"

THE ELECTRO MAGNETIC SPECTRUM

Wavelength
(metres)

| Radio | Microwave | Infrared | Visible | Ultraviolet | X-Ray | Gamma Ray |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10^{3} | 10^{-2} | 10^{-5} | 10^{-6} | 10^{-8} | 10^{-10} | 10^{-12} |

Frequency
(Hz)

- Increasing Frequency (v)

Increasing Wavelength (λ) \rightarrow

Visible spectrum

We shall take a break here.......

Questions?

pcd@physics.iitm.ac.in

Comments ?
http://www.physics.iitm.ac.in/~labs/amp/
pcdeshmukh@iitmandi.ac.in

Next: L33 Unit 10 - Electrodynamics \& STR

STiCM

Select / Special Topics in Classical Mechanics

P. C. Deshmukh

Department of Physics Indian Institute of Technology Madras Chennai 600036

School of Basic Sciences Indian Institute of Technology Mandi Mandi 175001
pcdeshmukh@iitmandi.ac.in

STiCM Lecture 33

Unit 10 : Classical Electrodynamics

Electrodynamics \& Special Theory of Relativity

Electrodynamics \& STR

The special theory of relativity is intimately linked to the general theory of electrodynamics.

Both of these topics belong to 'Classical Mechanics'.

Albert Einstein
1879-1955

Galilean Relativity

What is the velocity of the

oncoming car?

... relative to whom?
Time t is the same in the red frame and in the blue frame.
$\vec{r}(t)=\vec{r}^{\prime}(t)+\vec{u}_{c} t$

$$
\frac{d \vec{r}}{d t}-\vec{u}_{c}=\frac{d \overrightarrow{r^{\prime}}}{d t}
$$

What would happen if the object of your observations is light?

Galilean \& Lorentz Transformations. Special Theory of Relativity.

Galileo Galilei 1564-1642

Hendrik Antoon Lorentz 1853-1928

Smoking is

 injurious to health!
Just what does it mean to say that

 "Light (EM waves) travels at the constant speed in all inertial frames of references"?

$\hat{\mathrm{e}}_{\mathrm{z}^{\prime}}$ toward the right at a constant velocity fc where $0<f<1$.

COUNTER-INTUITIVE ?
Speed of light in a vacuum is a universal constant for all observers regardless of the motion of the observer or of the lightospowrce

(1)S detects both the flashes simultaneously.
(2)Light from both explosions travels at equal speed toward S/M.
(3) M would expect his sensor to record light from the right-cracker, before it senses light from the one on our left side.

Events that seem SIMULTANEOUS

 to the stationary observer do not seem to be so to the moving observer - who also is in an inertial frame!So, let us, in all humility, reconsider our notion of TIME and SPACE!

1. Maxwell's equations are correct in all inertial frames of references.
2. Maxwell's formulation predicts : EM waves travel at the speed $c=\sqrt{\frac{1}{\mu_{0} \varepsilon_{0}}}$.
3. HENCE, light (EM waves) travels at the constant speed in all inertial frames of references.

$$
c=\sqrt{\frac{1}{\mu_{0} \varepsilon_{0}}}
$$

Notion of TIME itself would need to change

Einstein was clever enough, \& bold enough, to stipulate just that!

$$
\begin{aligned}
& \text { What happens to our notion of } \\
& \text { space \& time? } \\
& \text { speed }=\frac{\text { distance }}{\text { time }}
\end{aligned}
$$

Time Dilation

Length Contraction

Hendrik Antoon Lorentz 1853-1928

1902 Nobel Prize in Physics
"in recognition of the extraordinary service they rendered by their researches into the influence of magnetism upon radiation phenomena"

Lorentz contraction!

Lorentz moving up!

http://wwsoboun.kyoto-u.ac.jp/~suchii/lorentz.tr.html

LORENTZ transformations (x, y, z, t) to $\left(x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}\right)$

Requirements:

Ensure that speed of light is same in all inertial frames of references.

Transform both space and time coordinates.

Transformation equations must agree with Galilean transformations when V<<<C.

Faraday's experiments

Current: identical!

Reason here...

$$
\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}
$$

Strength of B decreased.
Nothing is moving, but still, current seen!!!

$$
I \propto \frac{d B}{d t}
$$

Einstein:
Special Theory of Relativity
"So the "flux rule" that the emf in a circuit is equal to the rate of change of the magnetic flux through the circuit applies whether the flux changes because the field changes or because the circuit moves (or both).... Yet in our explanation of the rule we have used two completely distinct laws for the two cases : $\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}$ for "field changes", and $\overrightarrow{\mathrm{V}} \times \vec{B}$ for "circuit moves".

We know of no other place in physics where such a simple and accurate general principle requires for its real understanding an analysis in terms of two different phenomena."

- Richard P. Feynman,

The Feynman Lectures on Physics

We began with simple, empirical foundations of classical electrodynamics

Coulomb also
advanced the view that negative
the inverse square law:
Priestly (1767)
Robinson (1769)
Cavendish (1771)
Coulomb (1785) charges exist, that they did not merely represent absence of a positive charge.

Rest mass of the photon

Range of the
 At what rate does the potential between two charges diminish with distance?

$$
\begin{aligned}
\oiint \vec{E}(\vec{r}) \bullet \overrightarrow{d S} & =\oiint\left(\frac{q}{4 \pi \varepsilon_{0}} \frac{\vec{r}-\vec{r}^{\prime}}{\left|\vec{r}-\vec{r}^{\prime}\right|^{3}}\right) \bullet \overrightarrow{d S} \\
\oiint \vec{E}(\vec{r}) \bullet \overrightarrow{d S} & =\oiint\left(\frac{q}{4 \pi \varepsilon_{0}} \frac{\hat{u}}{\left|\vec{r}-\vec{r}^{\prime}\right|^{2}}\right) \bullet \overrightarrow{d S} \\
\oiint \vec{E}(\vec{r}) \bullet \overrightarrow{d S} & =\oiint\left(\frac{q}{4 \pi \varepsilon_{0}} \frac{d S \cos \xi=d \Omega\left|\vec{r}-\vec{r}^{\prime}\right|^{2}}{\left|\vec{r}-\vec{r}^{\prime}\right|^{2}}\right) \quad \begin{array}{l}
\text { Independent of shape! } \\
\text { Also, the result is } \\
\text { lompletely } \\
\text { independent of just } \\
\text { where inside the } \\
\text { arbitrary region is the } \\
\text { charge placed! }
\end{array} \\
\oiint \vec{E}(\vec{r}) \bullet \overrightarrow{d S} & =\oiint\left(\frac{q}{4 \pi \varepsilon_{0}} \frac{d \Omega\left|\vec{r}-\vec{r}^{\prime}\right|^{2}}{\left|\vec{r}-\vec{r}^{\prime}\right|^{2}}\right) \\
& =\frac{q}{\varepsilon_{0}} \quad
\end{aligned}
$$

$\vec{\nabla} \times \vec{B}=\mu_{0} \vec{J}$
 Oersted,
 Ampere Biot-Savart

$$
\oint \vec{E} \bullet \overrightarrow{d l}=-\frac{\partial \Phi_{B}}{\partial t}=-\frac{\partial}{\partial t} \iint \vec{B} \bullet \overrightarrow{d S}
$$

Faraday, Lenz

Maxwell added a term corresponding to changing electric flux, similar to the term for changing magnetic flux of Faraday-Lenz law

$$
\begin{gathered}
\oint \vec{B} \bullet \overrightarrow{d l}=\mu_{0} I_{\text {enclosed }}+\mu_{0} \varepsilon_{0} \frac{\partial}{\partial t} \iint \vec{E} \bullet \overrightarrow{d S} \\
\text { Oersted, Ampere - Maxwell } \\
\vec{\nabla} \times \vec{B}=\mu_{0} \vec{J}+\underset{\text { peossum }}{\mu_{0} \varepsilon_{0}} \frac{\partial \vec{E}}{\partial t}
\end{gathered}
$$

The equations of James Clerk Maxwell

$$
\vec{\nabla} \bullet \vec{E}(\vec{r})=\frac{\rho(\vec{r})}{\varepsilon_{0}}
$$

$\oiint \vec{E}(\vec{r}) \bullet \overrightarrow{d S}=\underline{q_{\text {enclosed }}}$ ε_{0}

$$
\begin{array}{ll}
\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} & \oint \vec{E} \bullet \overrightarrow{d l}=-\frac{\partial \Phi_{B}}{\partial t} \\
\vec{\nabla} \bullet \vec{B}=0 & \oiint \vec{B}(\vec{r}) \bullet \overrightarrow{d S}=0
\end{array}
$$

SYMMETRY!

$$
\oint \vec{B} \bullet \overrightarrow{d l}=\mu_{0} I_{\text {enclosed }}+
$$

$$
\vec{\nabla} \times \vec{B}=\mu_{0} \vec{J}+\mu_{0} \varepsilon_{0} \frac{\partial \vec{E}}{\partial t}
$$

The equations of James Clerk Maxwell
$\vec{\nabla} \bullet \vec{E}(\vec{r})=\frac{\rho(\vec{r})}{\varepsilon_{0}}$ ε_{0}

$$
\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}
$$

Changing magnetic field produces a rotational electric field.

$$
\vec{\nabla} \bullet \vec{B}=0
$$

$$
\mathrm{v}=\sqrt{\frac{1}{\mu_{0} \varepsilon_{0}}}=c \quad \mathrm{c} \text { : constant. }
$$

$\vec{\nabla} \times \vec{B}=\mu_{0} \vec{J}+\mu_{0} \varepsilon_{0} \frac{\partial \vec{E}}{\partial t}$
Changing electric field produces a rotational magnetic field.

Maxwell's equations involve derivatives with respect to space and time, and they unify electro-magnetic phenomena and light/optics.

Space?

Time?
Feynman's observations!

Special Theory of Relativity (STR)
connects all this up.

$$
\vec{F}=q[\vec{E}+\overrightarrow{\mathrm{v}} \times \vec{B}]
$$

$$
\vec{F}=\frac{d \vec{p}}{d t}
$$

Charge particle dynamics observed in different INERTIAL frames of
reference

Examine trajectories of charged particles in EM fields, as observed by two observers both in their respective inertial frames. S' moves with respect to S at a constant velocity $\overrightarrow{\mathrm{V}}_{\mathrm{f}}$ along the X-direction.

$\frac{d \vec{p}}{d t}=\vec{F} \quad$ where $\vec{F}=q[\vec{E}+\vec{v} \times \vec{B}]$
$\frac{d \vec{p}}{d t}=\vec{F} \quad$ where $\vec{F}=q[\vec{E}+\overrightarrow{\mathrm{v}} \times \vec{B}]$

$$
\begin{aligned}
& x, y, z, t \rightarrow x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime} \\
& \vec{r}=\vec{r}(t) ; \quad \vec{r}^{\prime}=\vec{r}^{\prime}\left(t^{\prime}\right)
\end{aligned}
$$

$$
(\vec{E}, \vec{B}) \rightarrow\left(\vec{E}^{\prime}, \vec{B}^{\prime}\right)
$$

$\frac{d \vec{p}^{\prime}}{d t^{\prime}}=\vec{F}^{\prime} \quad$ where $\vec{F}^{\prime}=q\left[\vec{E}^{\prime}+\vec{v}^{\prime} \times \vec{B}^{\prime}\right]$

$$
\vec{r}^{\prime}=\vec{r}^{\prime}\left(t^{\prime}\right)
$$

We shall take a break here.......

Questions?

pcd@physics.iitm.ac.in

Comments ?
http://www.physics.iitm.ac.in/~labs/amp/
pcdeshmukh@iitmandi.ac.in

Next: L34
Unit 10 - Electrodynamics \& STR

STiCM

Select / Special Topics in Classical Mechanics

P. C. Deshmukh

Department of Physics Indian Institute of Technology Madras Chennai 600036

School of Basic Sciences Indian Institute of Technology Mandi Mandi 175001
pcd@physics.iitm.ac.in

STiCM Lecture 34

Unit 10 : Classical Electrodynamics
Electrodynamics \& Special Theory of Relativity

Examine trajectories of charged particles in EM fields, as observed by two observers both in their respective inertial frames. S' moves with respect to S at a constant velocity $\overrightarrow{\mathrm{V}}_{\mathrm{f}}$ along the X-direction.

Speed of light: does not change...

...from one inertial frame of reference to another......

STR \longleftrightarrow ED

... it is 'time' that changes!

$\frac{d \vec{p}}{d t}=\vec{F} \quad$ where $\vec{F}=q[\vec{E}+\overrightarrow{\mathrm{v}} \times \vec{B}]$

$$
\begin{aligned}
& x, y, z, t \rightarrow x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime} \\
& \vec{r}=\vec{r}(t) ; \quad \vec{r}^{\prime}=\vec{r}^{\prime}\left(t^{\prime}\right)
\end{aligned}
$$

$$
(\vec{E}, \vec{B}) \rightarrow\left(\vec{E}^{\prime}, \vec{B}^{\prime}\right)
$$

$\frac{d \vec{p}^{\prime}}{d t^{\prime}}=\vec{F}^{\prime} \quad$ where $\vec{F}^{\prime}=q\left[\vec{E}^{\prime}+\vec{v}^{\prime} \times \vec{B}^{\prime}\right]$

$$
\vec{r}^{\prime}=\vec{r}^{\prime}\left(t^{\prime}\right)
$$

$$
\begin{gathered}
x^{\prime}=\gamma_{f}\left(x-\mathrm{v}_{f} t\right), \quad y^{\prime}=y, \quad z^{\prime}=z, \quad t^{\prime}=\gamma_{f}\left(t-\frac{\mathrm{v}_{f}}{c^{2}} x\right) \\
\text { where } \gamma_{f}= \\
1 / \sqrt{1-\frac{\mathrm{v}_{f}^{2}}{c^{2}}}
\end{gathered}
$$

$E_{x}^{\prime}=E_{x}$
$E_{y}^{\prime}=\gamma_{f}\left[E_{y}-\mathrm{v}_{f} B_{z}\right]$

$$
\begin{aligned}
& B_{x}^{\prime}=B_{x} \\
& B_{y}^{\prime}=\gamma_{f}\left[B_{y}+\frac{\mathrm{v}_{f}}{c^{2}} E_{z}\right] \\
& B_{z}^{\prime}=\gamma_{f}\left[B_{z}+\frac{\mathrm{v}_{f}}{c^{2}} E_{y}\right]
\end{aligned}
$$ constructs of linear superposition.

Demonstration of the 'STR \leftrightarrow ED' educational software

'Motion of Charged Particles in Electromagnetic Fields and Special Theory of Relativity',
P. Chaitanya Das, G. Srinivasa Murty,
K. Satish Kumar, T A.Venkatesh and P.C. Deshmukh

Resonance, Vol. 9, Number 7, 77-85 (2004)
You can download the software from this link:
http://www.physics.iitm.ac.in/~labs/amp/homepage/dasandmurthy.htm

Charge of the particle: -1.602e-19 C

electron

Mass of the particle: $9.1 \mathrm{e}-31 \mathrm{Kg}$

Case 1
$E x=0.0 \quad B x=0.1 \quad v x=4.6 e 7$
$\mathrm{Ey}=0.0 \quad \mathrm{By}=0.0 \quad \mathrm{vy}=2.65 \mathrm{e} 8$
$\mathrm{Ez}=0.0 \quad \mathrm{Bz}=0.0 \quad \mathrm{vz}=0.0$
$\mathrm{v}_{\text {rel }}=2 \mathrm{e} 8$

Units: Electric field E in V/m, Magnetic field B in $\mathrm{Wb} / \mathrm{m}^{2}$

Case 3
$\mathrm{Ex}=35 \mathrm{e} 3 \quad \mathrm{Bx}=0.05 \mathrm{vx}=0.0$
$E y=0.0 \quad B y=0.0 \quad v y=2.65 e 7$
$\mathrm{Ez}=0.0 \quad \mathrm{Bz}=0.0 \quad \mathrm{vz}=0.0$
$v_{\text {rel }}=-2.5 \mathrm{e} 8$

Examine trajectories of charged particles in EM fields, as observed by two observers both in their respective inertial frames. S' moves with respect to S at a constant velocity $\overrightarrow{\mathrm{V}}_{\mathrm{f}}$ along the X-direction.

Charge of the particle: -1.602e-19 C

electron

Mass of the particle: $9.1 \mathrm{e}-31 \mathrm{Kg}$

Case 1
$E x=0.0 \quad B x=0.1 \quad v x=4.6 e 7$
$\mathrm{Ey}=0.0 \quad \mathrm{By}=0.0 \quad \mathrm{vy}=2.65 \mathrm{e} 8$
$\mathrm{Ez}=0.0 \quad \mathrm{Bz}=0.0 \quad \mathrm{vz}=0.0$
$\mathrm{v}_{\text {rel }}=2 \mathrm{e} 8$

Units: Electric field E in V/m, Magnetic field B in $\mathrm{Wb} / \mathrm{m}^{2}$

Case 3
$\mathrm{Ex}=35 \mathrm{e} 3 \quad \mathrm{Bx}=0.05 \mathrm{vx}=0.0$
$E y=0.0 \quad B y=0.0 \quad v y=2.65 e 7$
$\mathrm{Ez}=0.0 \quad \mathrm{Bz}=0.0 \quad \mathrm{vz}=0.0$
$v_{\text {rel }}=-2.5 \mathrm{e} 8$

Electrodynamics in tensor notation

We provide a very brief introduction;

- once the structure of the equations is understood, ordinary matrix algebra is sufficient to interpret the relations.

Detailed work-out is left as rather straight-forward exercises.

EM field expressed as derivable from 'potential' contravariant 4 -vector

$$
\begin{aligned}
& x^{\mu}=\left(x^{0}, \vec{x}\right)=\left(x^{0}, x^{1}, x^{2}, x^{3}\right) \\
& =(c t, x, y, z)
\end{aligned}
$$

covariant 4-vector

$$
x_{\mu}=\left(x_{0}=c t,-\vec{x}\right)
$$

$$
g_{\mu \nu}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x^{0} \\
x^{1} \\
x^{2} \\
x^{3}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

$$
\begin{array}{ll}
A^{\mu}=\left(\frac{\phi}{c}, \vec{A}\right) & \text { EM Potent } \\
F^{\mu v}=\frac{\partial A^{v}}{\partial x_{\mu}}-\frac{\partial A^{\mu}}{\partial x_{v}} & \text { EM Fields }
\end{array}
$$

Notation:

$$
\partial^{\mu} \equiv \frac{\partial}{\partial x_{\mu}} \text { and } \partial_{\mu} \equiv \frac{\partial}{\partial x^{\mu}}
$$

If a frame of reference \bar{S} moves w.r.t. S along X-axis at speed $\left|\overrightarrow{\mathrm{v}}_{f}\right|$, the Lorentz transformation is:

$$
\begin{aligned}
& \bar{x}=\gamma_{f}\left(x-\mathrm{v}_{f} t\right), \quad \bar{y}=y, \quad \bar{z}=z, \quad \bar{t}=\gamma_{f}\left(t-\frac{\mathrm{v}_{f}}{c^{2}} x\right) \\
& {\left[\begin{array}{l}
\bar{a}^{0} \\
\bar{a}^{1} \\
\bar{a}^{2} \\
\bar{a}^{3}
\end{array}\right]=\left[\begin{array}{cccc}
\gamma_{f} & -\gamma_{f} \beta & 0 & 0 \\
-\gamma_{f} \beta & \gamma_{f} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
a^{0} \\
a^{1} \\
a^{2} \\
a^{3}
\end{array}\right]}
\end{aligned}
$$

$$
\bar{a}^{\mu}=\Lambda_{v}^{\mu} a^{v} \quad \text { where } \gamma_{f}=1 / \sqrt{1-\frac{\mathrm{v}_{f}^{2}}{c^{2}}} \quad \beta=\frac{\mathrm{v}_{f}}{\mathrm{c}}
$$

The EM field is conveniently expressed as an

 antisymmetric tensor that has the following form:$$
\begin{gathered}
t^{\mu \nu}=\left[\begin{array}{c:c:c:c}
t^{00}=0 & t^{01} & t^{02} & t^{03} \\
\hdashline t^{10}=-t^{01} & t^{11}=0 & t^{12} & t^{13} \\
\hdashline t^{20}=-t^{02} & t^{21}=-t^{12} & t^{22}=0 & t^{23} \\
\hdashline t^{30}=-t^{03} & t^{31}=-t^{13} & t^{32}=-t^{23} & t^{33}=0
\end{array}\right] \\
F^{\mu \nu}=\left[\begin{array}{c:c:c}
F^{00}=0 & F^{01}=\frac{E_{x}}{c} & F^{02}=\frac{E_{y}}{c} \\
\hdashline F^{10}=-F^{01} & F^{11}=0 & F^{12}=B_{z} \\
\hdashline F^{20}=-F^{02} & F^{21}=-F^{12}=-B_{y} \\
\hline F^{30}=-F^{03} & F^{31}=-F^{13} & F^{32}=0 \\
\text { pco_sticm }_{22}=-F^{23} & F^{33}=B_{x}
\end{array}\right]
\end{gathered}
$$

$\bar{a}_{\mu}=\Lambda_{\nu}^{\mu} a^{\nu}$: Transformation rule for $1^{\text {st }}$ rank tensor 4 -vector

$$
\begin{aligned}
& \bar{t}^{\mu \nu}=\Lambda_{\lambda}^{\mu} \Lambda_{\sigma}^{v} t^{\lambda \sigma}: \\
& \text { Transformation rule for } 2^{\text {nd }} \text { rank tensor }
\end{aligned}
$$

$\partial F^{\mu \nu}$
$\frac{\partial F}{\partial x^{v}}=\mu_{0} J^{\mu}:$ Maxwell's equations
∂x^{V}
where $J^{\mu}=\left(c \rho, J_{x}, J_{y}, J_{z}\right)$ is the Current Density 4-Vector.
$\frac{\partial F^{\mu \nu}}{\partial x^{\nu}}=\mu_{0} J^{\mu}: F^{00}=0 \quad F^{01}=\frac{E_{x}}{c} \quad F^{02}=\frac{E_{y}}{c} \quad F^{03}=\frac{E_{z}}{c}$
$J^{\mu}=\left(c \rho, J_{x}, J_{y}, J_{z}\right)$ is the Current Density 4-Vector. For $\mu=0$:
$\frac{\partial F^{0 v}}{\partial x^{v}}=\sum_{v=0}^{3} \frac{\partial F^{0 v}}{\partial x^{v}}=\frac{\partial F^{00}}{\partial x^{0}}+\frac{\partial F^{01}}{\partial x^{1}}+\frac{\partial F^{02}}{\partial x^{2}}+\frac{\partial F^{03}}{\partial x^{3}}=\mu_{0} J^{0}$

$$
\text { ie. } \begin{aligned}
\frac{1}{\mathrm{c}}\left[\frac{\partial E_{x}}{\partial x}+\frac{\partial E_{y}}{\partial y}+\frac{\partial E_{z}}{\partial z}\right]= & \mu_{0} c \rho \quad \sqrt{\frac{1}{\mu_{0} \varepsilon_{0}}}=c \\
& \rightarrow \vec{\nabla} \bullet \vec{E}=\frac{\rho}{\varepsilon_{0}}
\end{aligned}
$$

References:
[1] C Kittel, W D Knight, M A Ruderman, A C Helmholz and B J Moyer, Mechanics. Berkeley Physics Course, McGraw HIII Inc., New York, Vo1.I,1981.
[2] E M Purcell, Electricity and Magnetism Course, Berkeley Physics Course, McGraw HIII Inc., New York, Vol II, 1981.
[3] R P Feynman, The Feynman Lectures on Physics, Addison- Wesley, Vol II, 1964.
[4] D J Griffiths, Introduction to Electrodynamics, Prentice Hall of India, 1999.
[5] A N Matveev, Mechanics and Theory of Relativity, Mir Publishers, Moscow, 1989.
[6] Charles A. Brau 'Modern Problems in Classical Electrodynamics' Oxford Univ. Press, 2004.
[7] P. Chaitanya Das, G. Srinivasa Murty, K. Satish Kumar, T A. Venkatesh and P.C. Deshmukh
'Motion of Charged Particles in Electromagnetic Fields and Special
Theory of Relativity',
Resonance, Vol. 9, Number 7, 77-85 (2004)

We shall take a break here.......

Questions?

Comments ?
pcd@physics.iitm.ac.in
pcdeshmukh@iitmandi.ac.in

Next: L35
Unit 11 - CHAOTIC DYNAMICAL SYSTEMS

